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1 Introduction

Deformed quantum field theories have been subject to renewed attention in recent years

due to their natural appearance in string theory. Initial investigations focussed on theories

on non-commutative spacetime in which the commutator of the spacetime co-ordinates be-

comes non-zero. More recently [1–9], non-anticommutative supersymmetric theories have

been constructed by deforming the anticommutators of the Grassmann co-ordinates θα

(while leaving the anticommutators of the θα̇ unaltered). Consequently, the anticommuta-

tors of the supersymmetry generators Qα̇ are deformed while those of theQα are unchanged.

It is straightforward to construct non-anticommutative versions of ordinary supersymmet-

ric theories by taking the superspace action and replacing ordinary products by the Moyal

∗-product [10] which implements the non-anticommutativity. Non-anticommutative ver-

sions of the Wess-Zumino model and supersymmetric gauge theories have been formulated

in four dimensions [10, 11] and their renormalisability discussed [12–16], with explicit

computations up to two loops [17] for the Wess-Zumino model and one loop for gauge the-

ories [18–22]. Even more recently, non-anticommutative theories in two dimensions have

been constructed [23, 25–28], and their one-loop divergences computed [24, 29]. In ref. [30]

we returned to a closer examination of the non-anticommutative Wess-Zumino model (with

a superpotential) in four dimensions, and showed that to correctly obtain results for the

theory where the auxiliary fields have been eliminated, from the corresponding results for

the uneliminated theory, it is necessary to include in the classical action separate couplings

for all the terms which may be generated by the renormalisation process.

It seems natural to extend the above calculations to the gauged case, for which we seek

the simplest possible gauged extension of the Wess-Zumino model with a (trilinear) super-

potential. General gauged non-commutative theories were considered earlier [18–22], and

in particular gauged interacting theories in ref. [22]; however there we only considered a tri-

linear superpotential in the adjoint SUN case, and a mass term in the fundamental UN case.

The simplest model with a trilinear superpotential is the three-field Wess-Zumino model

with a U1 gauge invariance, and it is this model we shall consider here. We shall consider

the one-loop renormalisation of this model in its entirety; the divergent contributions in
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the absence of a superpotential can be extracted from refs. [18, 19], while even some of the

contributions with a superpotential may be extracted from ref. [22] by judicious adaptation

of the results there presented for the case of the fundamental UN case with mass terms;

while a number of the divergent contributions will require a fresh diagrammatic computa-

tion. We start by considering the uneliminated theory and then proceed to compare with

the results from the corresponding theory with the auxiliary fields eliminated.

2 Action

In this section we shall give the action for an N = 1
2 supersymmetric U1 gauge theory

coupled to chiral matter with a superpotential [10, 11, 22]. This is obtained by the reduc-

tion to components of the deformed, i.e. non-anticommutative, action in superspace. A

U1 gauge-invariant superpotential requires at least three chiral fields; we shall take exactly

three, with scalar, fermion, auxiliary components denoted φi, ψi, Fi, i = 1, 2, 3. The corre-

sponding U1 charges are denoted qi, i = 1, 2, 3. For simplicity we shall consider a massless

superpotential. For convenience we split the action into kinetic and potential terms, namely

S0 = Skin + Spot (2.1)

where

Skin =

∫

d4x

[

−1

4
FµνFµν − iλ̄σµ(Dµλ) +

1

2
D2

−igCµνFµν λ̄λ̄+ F iFi − iψiσ
µ(Dµψ)i − (Dµφ)i(Dµφ)i

+
√

2gCµν(Dµφ)iλ̄σνψi + igCµνφiFµνFi +
1

4
|C|2g2Fiφiλ̄λ̄

+
∑

i

{

gqiφiDφi + i
√

2gqi(φiλψi − ψiλ̄φi)

−γiCµνg
[√

2(Dµφ)iλ̄σνψi +
√

2φiλ̄σν(Dµψ)i + iφiFµνFi

]}

]

, (2.2)

and

Spot = −
∫

d4x

[

{(FiGi − yφ1ψ2ψ3 − yφ2ψ3ψ1 − yφ3ψ1ψ2) + h.c.}

+ 2igyCµνFµνφ1φ2φ3 −
1

4
y|C|2F1F2F3

]

, (2.3)

where

G1 = yφ2φ3, (2.4)

and similarly for G2, G3 (corresponding to a superpotential W (Φ) = yΦ1Φ2Φ3). The

covariant derivative is defined by

(Dµφ)i = (∂µ + igqiAµ)φi. (2.5)

In eq. (2.2), Cµν is related to the non-anti-commutativity parameter Cαβ by

Cµν = Cαβǫβγσ
µν
α
γ , (2.6)

– 2 –
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where

σµν =
1

4
(σµσν − σνσµ),

σµν =
1

4
(σµσν − σνσµ), (2.7)

and

|C|2 = CµνCµν . (2.8)

Our conventions are in accord with ref. [10]; in particular,

σµσν = −ηµν + 2σµν . (2.9)

The definition of |C|2 is similarly well-established although C2 might be a preferable no-

tation for this quantity.

For gauge invariance of Spot we require

q1 + q2 + q3 = 0, (2.10)

while anomaly cancellation leads to

q1q2q3 = 0 (2.11)

so that the allowed set of charges is in fact (q,−q, 0). This means that in fact the most gen-

eral trilinear superpotential is in fact W = yΦ1Φ2Φ3 +y′Φ3
3 (assuming Φ3 to be the neutral

field). We choose, however, to retain W = yΦ1Φ2Φ3 and to present formulae in a manner

explicitly symmetric under qi permutations; for example for later convenience we denote

Q = q21 + q22 + q23. (2.12)

Note also that it follows from eqs. (2.10), (2.11) that superpotential mass terms are allowed

in general; however as remarked earlier we will restrict ourselves to the massless case.

It is interesting to note that the constraints eqs. (2.10), (2.11) mean that if we set

q1 = −q2 = q and y =
√

2gq then the undeformed theory has N = 2 supersymmetry.

It is easy to show that S0 is invariant under

δAµ = −iλ̄σµǫ,

δλα = iǫαD + (σµνǫ)α

[

Fµν +
1

2
iCµν λ̄λ̄

]

, δλ̄α̇ = 0,

δD = −ǫσµDµλ̄,

δφi =
√

2ǫψi, δφi = 0,

δψαi =
√

2ǫαFi, δψiα̇ = −i
√

2(Dµφi)(ǫσ
µ)α̇,

δFi = 0, δF i = −i
√

2Dµψiσ
µǫ− 2igqiφiǫλ+ 2CµνgDµ(φiǫσν λ̄). (2.13)

The set of terms multiplied by γi are separately N = 1
2 invariant under the transfor-

mations of eq. (2.13); they are not in fact produced by the reduction to components of the

superspace action, but we have anticipated the need for them later when we renormalise

the theory. It will be sufficient to take γi to consist purely of divergent contributions. The

– 3 –
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|C|2F1F2F3 and |C|2Fiφiλ̄λ̄ terms in eqs. (2.2), (2.3) are also each separately N = 1
2 invari-

ant, and therefore could be omitted from our action without spoiling the N = 1
2 invariance.

However, once we do include the |C|2F1F2F3 and |C|2Fiφiλ̄λ̄ terms, it is necessary for the

renormalisation of the model to include all possible terms which may be generated, as was

explained in the ungauged case in ref. [30]. It is easy to list these terms [16, 22]. The action

has a “pseudo R-symmetry” under

φi → e−iαφi, Fi → eiαFi, λ→ e−iαλ, Cαβ → e−2iαCαβ, y → eiαy, (2.14)

F i, φi, λ̄ and y transforming with opposite charges to Fi, φi, λ and y respectively, and all

other fields being neutral; and also a “pseudo chiral symmetry” under

φi → eiγφi, y → e−3iγy, (2.15)

Fi and ψi transforming in a similar fashion to φi and barred quantities transforming with

opposite charges; the gauge fields being unaffected. The divergent terms which can arise

subject to these invariances, for the massless U1 case and suppressing the 1, 2, 3 subscripts,

consist of (in addition to those already present in the action)

|C|2F 2φ
2
, y|C|2Fφ4

, y2|C|2φ6
, y|C|2λ̄λ̄φ3

. (2.16)

The combination

y−1[F1ψ2(Cψ3) + F2ψ3(Cψ1) + F3ψ1(Cψ2)] (2.17)

(where (Cψ)α = Cαβψ
β) is allowed by the above symmetries and N = 1

2 invariant, but we

shall see later that it is not in fact generated as a divergence in the U1 theory (at least

at one loop) if it is not already present in the classical Lagrangian, and so we choose to

omit it. Terms of the generic form φ
2
ψ(Cψ) are allowed by the above symmetries but

it is impossible to construct an N = 1
2 invariant combination which includes them. We

have included in (2.16) the appropriate factors of y for invariance under the pseudo-chiral

symmetry. These factors are not uniquely determined since yy is invariant under this

symmetry; the choice we have made is both concise and motivated by later considerations.

We must include all the terms in (2.16) with their own coefficient in the action and

therefore we are led to our complete action

S = S0 + Sgen (2.18)

where S0 is given in eq. (2.1) and

Sgen =

∫

d4x

[

y−1|C|2
{(

k1 −
1

4
yy

)

F1F2F3 + k2

(

F1F2G3 + F2F3G1 + F3F1G2

)

+ k3(F1G2G3 + F2G3G1 + F3G1G2) + k4G1G2G3

}

+ |C|2
{(

K1 −
1

4
g2

)

Fiφi +K2yφ1φ2φ3

}

λ̄λ̄

]

. (2.19)

(It is natural to impose the same cyclic symmetry on Sgen as already present in the su-

perpotential). The F1F2F3 and Fiφiλ̄λ̄ terms are now effectively assigned an arbitrary

– 4 –
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Figure 1. One-loop diagram with a C vertex and one gaugino, one ψ and one φ external legs (a

blob representing the C vertex and dashed, full, full/wavy lines representing scalar, fermion and

gaugino fields respectively).

coefficient since the fact that they are separately N = 1
2 invariant (as are all the terms in

Sgen) means there is no reason for their renormalisation to be accounted for purely by re-

placing quantities in S0 by the corresponding bare ones; N = 1
2 invariance will not preserve

the values of their coefficients derived from the deformed superfield action.

We use the standard gauge-fixing term

Sgf =
1

2α

∫

d4x(∂.A)2 (2.20)

with its associated ghost terms. The gauge propagator is given by

∆µν = − 1

p2

(

ηµν + (α− 1)
pµpν
p2

)

(2.21)

and the fermion propagator is

∆αα̇ =
pµσ

µ
αα̇

p2
, (2.22)

where the momentum enters at the end of the propagator with the undotted index.

3 Renormalisation

In this section we discuss the renormalisation of the gauged non-anticommutative Wess-

Zumino model at one loop.

The divergent contributions from one-loop diagrams to terms in Skin can mostly be

extracted from the results for the SUN ×U1 case presented in refs. [18, 19], and so we shall

just give the results (suppressing the well-known C-independent contributions) without

tabulating the contributions from individual diagrams; an exception is the yy-dependent

divergences, since in ref. [22], where we incorporated a superpotential, we did not consider

the resulting new divergent contributions to terms in Skin. The corresponding diagrams

are depicted in figures 1, 2. The contribution from figure 1 is simply

− 2
√

2yygLCµνφiλ̄σν∂µψi, (3.1)

where

L =
1

16π2ǫ
. (3.2)

The contributions from figure 2 are tabulated in table 1, where

W1 = i
√

2yyg2CµνAµ
∑

i

qiφiλ̄σνψi. (3.3)

– 5 –
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(a) (b) (c)

(d)

Figure 2. One-loop diagrams with a C vertex and one gauge, one gaugino, one ψ and one φ

external legs (wavy lines representing gauge fields).

a −2W1

b W1

c −W1

d 0

Table 1. Divergent contributions from figure 2.

(In this and all the following tables the factors of L are suppressed.) Taking into account

the contributions from table 1, eq. (3.1) and those which can be extracted from ref. [19],

we obtain

Γpole
kin = L

∫

d4x
[

−2ig3QCµνFµν λ̄λ̄− 2
√

2gyyCµνφiλ̄σνDµψi

+
∑

i

(

2
√

2αg3q2iC
µνDµφiλ̄σνψi − 2ig3Cµνq2i φiFµνFi

)]

. (3.4)

The contributions to Spot, however, need to be reassessed due to the different form for the

potential, and we therefore show the relevant diagrams in figure 3 and list the corresponding

contributions in table 2. In table 2, W2 and W3 are defined by

W2 = iQg3CµνFµνφ1φ2φ3

W3 = ig3Cµν [q21∂µφ1φ2φ3 + q22∂µφ2φ3φ1 + q23∂µφ3φ1φ2]Aν . (3.5)

The contributions from table 2 add to

10iQg3L

∫

d4xyCµνFµνφ1φ2φ3. (3.6)

Note that the contributions from figures 3(e)-(h) cancel those from 3(i)-(l); we shall sub-

sequently omit several other pairs of diagrams where a similar cancellation occurs (in fact

– 6 –
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(a) (b) (c)

(e) (f)

(i)

(j)

(d)

(g) (h)

(k) (l)

Figure 3. One-loop diagrams with a C vertex and three φ and one gauge-field external legs (double,

zigzag lines representing chiral and gauge auxiliary fields respectively).

we have done so already, since a potential divergent yyCµνFµνFφ contribution cancels for

this reason).

The divergent contributions to the F1F2F3 and Fiφiλ̄λ̄ terms will be given in detail

shortly since these terms have now been assigned separate couplings in Sgen and so the

divergences cannot be extracted from earlier work. The remaining divergent contributions

are denoted by

Γpole
rem = −

∫

d4x

[

|C|2
{

y−1[X1F1F2F3 +X2aF1F2G3 +X2bF2F3G1 +X2cF3F1G2

+X3aF1G2G3 +X3bF2G3G1 +X3cF3G1G2 +X4G1G2G3

+X ′
2(F

2
1 φ

2
1 + F 2

2 φ
2
2 + F 2

3 φ
2
3) +X ′′

2 (q1φ1F1 + q2φ2F2 + q3φ3F3)
2]

– 7 –
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a 4W2 + 8W3

b 4W3

c −2W2 − 12W3

d 8W2

e 2αW2

f 2W2

g −4W2 − 8W3

h 8W3

i −2αW2

j −2W2

k 4W2 + 8W3

l −8W3

Table 2. Divergent contributions from figure 3.

+
[

X5Fiφi +X ′
5

∑

q2i Fiφi +X6yφ1φ2φ3

]

λ̄λ̄

}

+X7(q
2
1φ1ψ1 + q22φ2ψ2 + q23φ3ψ3)(q1φ1Cψ1 + q2φ2Cψ2 + q3φ3Cψ3)

]

. (3.7)

(Note the overall minus sign, introduced to avoid a proliferation of negative signs later

on.) In figures 4–9 are depicted the divergent one-loop diagrams contributing to X1, etc.

Their divergent contributions are shown diagram by diagram in tables 3–9 and given in

total by

X
(1)
1 = (6k2 − 6g2)yyL,

X
(1)
2a = {4(k1 + 2k2 + 2k3)yy + 2(1 + α)k2q1q2g

2}L,
X

(1)
2b = {4(k1 + 2k2 + 2k3)yy + 2(1 + α)k2q2q3g

2}L,
X

(1)
2c = {4(k1 + 2k2 + 2k3)yy + 2(1 + α)k2q3q1g

2}L,
X

(1)
3a = {2(3k2 + 6k3 + 4k4)yy + (1 + α)[2(k1 + 2k2)q2q3 −Qk3]g

2}L,
X

(1)
3b = {2(3k2 + 6k3 + 4k4)yy + (1 + α)[2(k1 + 2k2)q3q1 −Qk3]g

2}L,
X

(1)
3c = {2(3k2 + 6k3 + 4k4)yy + (1 + α)[2(k1 + 2k2)q1q2 −Qk3]g

2}L,
X

(1)
4 = −(1 + α)(k2 + 2k3 + 2k4)Qg

2L,

X
′(1)
2 = 2 (k1 + 2k2 + k3) yyL,

X
′′(1)
2 = −1

4
(1 + α)g4y,

X
(1)
5 = [(4K1 + 2K2)yy − g2yy)L,

X
(1)
5′ = g2(8K1 − 10g2)L,

X
(1)
6 = [2(7 − α)K1 + (7 − α)K2 + 14g2]Qg2L,

X
(1)
7 = 16g4L. (3.8)

– 8 –
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(c)(b)(a)

(e)(d) (f)

(g)

Figure 4. One-loop diagrams with a |C|2 vertex, F or φ external legs and purely F or φ internal

propagators.

X1 X2a,b,c X3a,b,c X ′
2

a 6k2yy

b 8k2yy 4k2yy

c 4k1yy 2k1yy

d 8k3yy 2k3yy

e 12k3yy

f 6k2yy

g 8k4yy

Table 3. Divergent contributions from figure 4.
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(c)

(d)

(i)

(j)

(a) (b)

(g) (h)

(m) (n)

(e) (f)

(k) (l)

Figure 5. One-loop diagrams with a |C|2 vertex, F or φ external legs and an internal gauge or D

propagator.

X2a X2b X2c X3a X3b X3c X4

a 2αk2q1q2g
2 2αk2q2q3g

2 2αk2q3q1g
2

b 2k2q1q2g
2 2k2q2q3g

2 2k2q3q1g
2

c −αk3Qg2
−αk3Qg2

−αk3Qg2

d −k3Qg2
−k3Qg2

−k3Qg2

e 2αk1q2q3g
2 2αk1q3q1g

2 2αk1q1q2g
2

f 2k1q2q3g
2 2k1q3q1g

2 2k1q1q2g
2

g 4αk2q2q3g
2 4αk2q3q1g

2 4αk2q1q2g
2

h 4k2q2q3g
2 4k2q3q1g

2 4k2q1q2g
2

i −2αk4Qg2

j −2k4Qg2

k −αk2g
2Q

l −k2Qg2

m −2αk3Qg2

n −2k3Qg2

Table 4. Divergent contributions from figure 5.
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(a) (b) (c)

(d)

Figure 6. One-loop diagrams with two Cµν vertices, F or φ external legs and an internal gauge

or D propagator.

X1 X ′′
2

a −6yyg2

b −1
4αg

4

c −1
4g

4

d 0

Table 5. Divergent contributions from figure 6.

(d)

(b)

(g)

(c)

(e) (f)

(h) (i)

(a)

Figure 7. One-loop diagrams with a |C|2 vertex, and two gaugino and F or φ external legs.
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X5 X6 X ′
5

a 8g2K1

b 4K1yy

c 2K2yy

d −2αQg2K1

e −2g2QK1

f 16Qg2K1

g 8Qg2K2

h −αQg2K2

i −Qg2K2

Table 6. Divergent contributions from figure 7.

(b)

(i)

(k)

(e)

(c)

(h)

(j)

(d) (f)

(g)

(l)

(a)

Figure 8. One-loop diagrams with two Cµν vertices, and two gaugino and F or φ external legs.
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X5 X6 X ′
5

a −g2yy

b −8g4

c −2g4

d 0

e 8g4Q

f 1
2αQg

4

g 1
2Qg

4

h 1
2(3 + α)Qg4

i 4Qg4

j −αQg4

k 0

Table 7. Divergent contributions from figure 8.

(a) (b) (c)

(c) (d)

Figure 9. One-loop diagrams with two φ and two ψ external legs (and no Yukawa vertices).

X7

a −4αg4

b 4(3 + α)g4

c −4αg4

d 4αg4

e 4g4

Table 8. Divergent contributions from figure 9.

The terms involving X ′
2, X

′′
2 and X ′

5 are not contained in the original action; while

the term involving X7 is not N = 1
2 invariant. However, we shall see later that all these

terms may be removed (at least at one loop) by field redefinitions. Other diagrams which

– 13 –
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Figure 10. One-loop diagram with two φ and two ψ external legs (and two Yukawa vertices).

(a) (b)

Figure 11. One-loop diagrams with one F and two ψ external legs.

potentially contribute divergences turn out to be zero or to cancel. Figure 10 is in fact zero

by symmetry. The divergences from the diagrams of figure 11 are of the form

y−1[(q2 − q3)F1ψ2(Cψ3) + (q3 − q1)F2ψ3(Cψ1) + (q1 − q2)F3ψ1(Cψ2)] (3.9)

which (in contrast to the similar combination in (2.17)) is also not N = 1
2 invariant;

moreover there is no field redefinition which could remove these terms and so they must

and indeed do cancel.

The divergences in eq. (3.8) should be cancelled as usual by replacing the parameters

y, y, g, k1−4, K1,2 and the fields φi, φi, Fi, F i, ψi, ψi, λ, λ̄ by corresponding appropriately-

chosen bare quantities yB, yB, k1B−4B , K1B,2B , φiB , φiB, FiB , F iB , ψiB , ψiB, λB, λ̄B , with

the bare fields given by φiB = Z
1

2

φi
φi, etc. However, as emphasised in ref. [31], renormalisa-

tion of a gauged supersymmetric theory in the uneliminated case (i.e. without eliminating

the auxiliary fields Fi and D) requires in general a non-linear renormalisation of Fi and D;

and in the general N = 1
2 case in ref. [22] we also required a non-linear renormalisation of

the gaugino field. In our present case we find it necessary to take at one loop

F
(1)
1B = Z

1

2
(1)

F F1 − (α+ 3)q21g
2yLφ2φ3,

F
(1)
1B = Z

1

2
(1)

F F1 − (α+ 3)q21g
2yLφ2φ3 + (α+ 9)ig2q21gLC

µνFµνφ1

+k1g
2L

[

1

2
(α+ 3)(q23F2φ1φ2 + q22F3φ1φ3) + αy

(

q21 − 1

2
q22 − 1

2
q23

)

φ
2
1φ2φ3

+ y

(

q21 +
1

2
q22 +

1

2
q23

)

φ
2
1φ2φ3

]

+k2g
2L

[

1

2
α(q23F2φ1φ2 + q22F3φ1φ3) + αy

(

2q21 − 1

2
q22 − 1

2
q23

)

φ
2
1φ2φ3

−
(

q21+q22−
1

2
q23

)

F2φ1φ2−
(

q21+q23−
1

2
q22

)

F3φ1φ3+
1

2
y(q22+q23)φ

2
1φ2φ3

]

+k3g
2yL

[

αq21 − (3q21 + 2q22 + 2q23)
]

φ
2
1φ2φ3 + 2(k1 + 2k2 + k3)yyLF1φ

2
1

– 14 –
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−1

4
(1 + α)g4q1φ1(q1F1φ1 + q2F2φ2 + q3F3φ3) + [−10g2 + (7 + α)K1]g

2Lq2i φiλ̄λ̄

−1

3
Qg2L

[

2y−1k1F2F3 + k1(F2φ1φ2 + F3φ1φ3) + (2k1 − 6k3)yφ
2
1φ2φ3

]

+y−1
[

R(1)F2F3 + S(1)(F2G3 + F3G2) + T (1)G2G3

]

(3.10)

with similar expressions for F
(1)
2B,3B , and also

λ
(1)
B = Z

1

2
(1)

λ λ+ i
√

2g
∑

i

ρ
(1)
i φi(Cψi). (3.11)

Here, ZF and Zλ, together with the renormalisation constants for the other fields have a

loop expansion

ZF = 1 +
∑

n≥1

Z
(n)
F , (3.12)

etc, and at one loop we have

Z
(1)
λ = −2g2LQ,

Z
(1)
A = −2g2LQ,

Z(1)
g = g2LQ,

Z
(1)
F = −2Lyy,

Z
(1)
φi

= 2L
[

−yy + (1 − α)g2q2i
]

, i = 1, 2, 3

Z
(1)
ψi

= 2L
[

−yy − (1 + α)g2q2i
]

, i = 1, 2, 3. (3.13)

The presence of ρi in the bare action produces terms
∑

i

ρig
[√

2Cµν(Dµφiλ̄σνψi + φiλ̄σνDµψi) + 2φiψi(
∑

qjφjCψj)
]

. (3.14)

The ρi in eq. (3.11) are, like the γi in eq. (2.2), purely divergent quantities, and at one loop

we find we need to take

γ
(1)
i = (8g2q2i − 2yy)L,

ρ
(1)
i = 8g2q2iL. (3.15)

With this value for ρi, the N = 1
2 non-invariant terms involving X7 in eq. (3.7) are can-

celled at one loop. In eq. (3.10), R, S, T represent possible additional renormalisations of

Fi which are not determined by the requirements of renormalisability.

With the above expression for F
(1)
iB , the renormalisation of the Yukawa couplings is as

expected from applying the non-renormalisation theorem in the superfield context, namely

yB = µ
1

2
ǫZ

− 1

2

Φ1
Z

− 1

2

Φ2
Z

− 1

2

Φ3
y, yB = µ

1

2
ǫZ

− 1

2

Φ1
Z

− 1

2

Φ2
Z

− 1

2

Φ3
y, (3.16)

where µ is the usual dimensional regularisation mass parameter, and ZΦi
, i = 1, 2, 3 are

the renormalisation constants for the chiral superfields as computed in a supersymmetric

gauge, namely (at one loop)

Z
(1)
Φi

= 2L
[

−yy + 2g2q2i
]

, i = 1, 2, 3. (3.17)

– 15 –
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The β-function for y is defined by βy = µ d
dµ
y with a similar expression for βy and then by

virtue of eqs. (3.16), (3.17),

β(1)
y =

1

16π2
(3yy − 2g2Q)y, (3.18)

with a similar expression for β
(1)
y .

Note that if we set q1 = −q2 = q and y = y =
√

2gq then eq. (3.19) reduces to

β(1)
g = 2q2

g3

16π2
, (3.19)

which is indeed the one-loop gauge β-function, consistent with our earlier remark that the

undeformed theory has N = 2 supersymmetry in this case.

We find from eqs. (2.19), (3.8), (3.10), (3.13), (3.15), (3.16),

k
(1)
1B = 6(k1 + k2 − g2)yyL− 3R(1),

k
(1)
2B = 4(k1 + 3k2 + 2k3)yyL+R(1) − S(1),

k
(1)
3B = 2(k1 + 5k2 + 8k3 + 4k4)yyL+ S(1) − T (1),

k
(1)
4B = 3T (1),

K
(1)
1B = ([6K1 + 2K2]yy + 2Qg2K1 − g2yy)L,

K
(1)
2B = 2(12K1 + 5K2 + 2g2)Qg2L. (3.20)

To a large extent the renormalisation of F 1,2,3 as given in eq. (3.10) is determined by the

requirement that the couplings k1−4, K1,2 are multiplicatively renormalised as described

above. However we still have the freedom to choose R(1), S(1), T (1), which are the same

for each F 1,2,3B . Choosing R(1) = S(1) = T (1) = 0 in eq. (3.10) leaves almost the minimal

renormalisation of F i possible to ensure multiplicative renormalisation; however we have

included the terms with a factor Q in eq. (3.10) in order to remove g2ki-dependent terms in

k1−4B (something which is only possible thanks to the particular form of the divergences,

as will become clearer later when we discuss the eliminated theory).

Writing βki
= µ d

dµ
ki (and similarly for K1,2) and as usual requiring that kiB and K1,2B

be independent of µ we then find that

β
(1)
k1

=
1

16π2
[6(k1 + k2 − g2)yy − 3r],

β
(1)
k2

=
1

16π2
[4(k1 + 3k2 + 2k3)yy + r − s],

β
(1)
k3

=
1

16π2
[2(k1 + 5k2 + 8k3 + 4k4)yy + s− t],

β
(1)
k4

=
3t

16π2
,

β
(1)
K1

=
1

16π2
([6K1 + 2K2]yy + 2Qg2K1 − g2yy),

β
(1)
K2

=
1

16π2
2(12K1 + 5K2 + 2g2)Qg2, (3.21)
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writing R(1) = rL, etc. We note that these β-functions are different in form from those

derived in the ungauged case in ref. [30]; of course our three-field superpotential is also

somewhat different from that used in the ungauged case, and we have also had to include

non-linear terms in F 1B (the F1φ
2
1 terms), which removed the X ′

2 terms which would have

spoiled renormalisability, but also contributed to k3B . It seems impossible to use the

freedom to choose R(1), S(1), T (1), in eq. (3.10) to make the two sets of β-functions agree.

We now turn to the calculation in the eliminated theory. If we eliminate Fi and F i
from the action we find

Fi = Gi,

F 1 = G1 − y−1|C|2
[

k1F2F3 + k2(F2G3 + F3G2) + k3G2G3

]

−igCµνFµνφ1 −
1

4
g2|C|2K1φ1λ̄λ̄, (3.22)

(with corresponding expressions for F 2, F 3) and the action becomes

S =

∫

d4x
[

−1

4
FµνFµν − iλ̄σµ(Dµλ) +

1

2
D2

−igCµνFµν λ̄λ̄− iψiσ
µ(Dµψ)i − (Dµφ)i(Dµφ)i

+g
∑

{

qiφiDφi + i
√

2gqi(φiλψi − ψiλ̄φi)

−γiCµνg
(√

2Dµφiλ̄σνψi +
√

2φiλ̄σνDµψi

)}

+
√

2gCµνDµφiλ̄σνψi

−GiGi + y(φ1ψ2ψ3 + φ2ψ3ψ1 + φ2ψ3ψ1) + y(φ1ψ2ψ3 + φ2ψ3ψ1 + φ2ψ3ψ1)

+igy(1 − γ1 − γ2 − γ3)C
µνFµνφ1φ2φ3 + λ1y

−1|C|2G3 + λ2y|C|2φ1φ2φ3λ̄λ̄
]

. (3.23)

where

λ1 = k1 + 3(k2 + k3) + k4,

λ2 = 3K1 +K2. (3.24)

The renormalisation of the last three terms in eq. (3.23) now needs to be reconsidered. First

let us consider the CµνFµνφ1φ2φ3 term. Its coefficient has changed, and in particular we see,

comparing eqs. (2.3), (3.23), that its finite part has changed by a factor of −1
2 . Moreover

the diagrams figures 3(e)-(h) which cancelled the contributions from figures 3(i)-(l) are no

longer present, while these latter contributions are multiplied by −1
2 . Moreover, since the

eliminated theory in eq. (3.23) also contains a GiGi vertex which was not present in the une-

liminated case, there is a new diagram depicted in figure 12, giving a divergent contribution

− 6iyy2Cµν
∫

d4xFµνφ1φ2φ3. (3.25)

However, taking all these effects into account, it is straightforward to check that the diver-

gences are still cancelled.

The remaining two terms need to be examined in more detail. We write the divergent

contributions to these terms as

Γpole
Celim = −|C|2

∫

d4x[Y1y
−1G1G2G3 + Y2yφ1φ2φ3λ̄λ̄], (3.26)

– 17 –
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Figure 12. Additional one-loop diagram for the eliminated case.

(introducing an overall minus sign as in eq. (3.7)). Most of the relevant contributions to

Y1 can be read off from those to X4 in table 4 with a k4 (here replaced by λ1). Similarly,

most of the relevant contributions to Y2 can be read off from those to X6 in table 6 with

a K2 (here replaced by λ2), and those to X6 in table 8. However, in the eliminated case

there are also diagrams with a gyCµνFµνφ1φ2φ3 vertex. Such diagrams were previously

cancelled by diagrams with an internal F propagator in a similar fashion to figures 3(e)-

(h) and 3(i)-(l); but of course such diagrams are no longer present in the eliminated case.

Again, there are further diagrams incorporating the GiGi vertex which was not present in

the uneliminated case. The result is that we now need to incorporate contributions from

the diagrams shown in figure 13. The contributions are listed in table 9 (note that the

contributions from figures 13(j), (k) cancel).

We find from the eliminated diagrams that

Y
(1)
1 = 2[12yyλ1 − (1 + α)g2Qλ1 − 3g2yy]L,

Y
(1)
2 = [6yyλ2 + (7 − α)Qg2λ2 + 4Qg4 − 3g2yy]L, (3.27)

and so

β
(1)
λ1

=
1

16π2
(24λ1yy − 6g2yy)

β
(1)
λ2

=
1

16π2
(6yyλ2 + 10Qg2λ2 + 4Qg4 − 3g2yy). (3.28)

An important consistency check is that

λ1B = k1B + k4B + 3(k2B + k3B),

λ2B = 3K1B +K2B , (3.29)

and it is easy to confirm that this is satisfied at one loop using eqs. (3.20) and (3.27). The

fact that we were able to remove g2ki terms from k
(1)
iB in the uneliminated case is now seen

as a consequence of the fact that λ
(1)
1B contains no g2λ1 terms.

The original deformed Wess-Zumino action of eq. (2.1) corresponded to the values

k1 = y, K1 = 1
4g

2, k2−4 = K2 = 0. However, our more general Lagrangian in eq. (2.19)

is invariant under N = 1
2 transformations whatever the values of k1−4, K1,2; and we see

from eq. (3.21) that the choice k1 = y, K1 = 1
4g

2, k2−4 = K2 = 0 is not maintained by

renormalisation; if we set k1 = y, K1 = 1
4g

2, k2−4 = K2 = 0 at one scale then different

values are inevitably generated at other scales. In ref. [30] we asked (for the ungauged

case) if there is any set of values of k1−4 (or at least any form for the deformed action)

which is preserved by renormalisation and which would be in some sense natural.

– 18 –
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(a)

(e)

(c)

(d) (f)

(g) (h)

(b)

(i)

(j) (k)

Figure 13. Further one-loop diagrams for the eliminated case.

Requiring that

ki = ai(yy)
ρ, i = 1 . . . 4,

where ai, i = 1 . . . 4 are numbers (i.e. not functions of y, y, or g, and hence scale indepen-

dent), entails

β
(1)
1

k1
=
β

(1)
2

k2
=
β

(1)
3

k3
=
β

(1)
4

k4
= ρ

(

β
(1)
y

y
+
β

(1)
y

y

)

. (3.30)

If we ask the same question here we shall find that the values of k1−4 and ρi must satisfy

the sole condition

[(24 − 6ρ)yy + 4ρQg2]λ1 = 6g2yy (3.31)

which is the same condition we would find in the eliminated case using eq. (3.28). In the

ungauged case we once again find that the particular solutions

k1 = −k2 = k3 = −k4, ρ = 0, (3.32)
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Y1 Y2

a 24yyλ1

b −6g2yy

c 0

d 0

e 6yyλ2

f −8Qg4

g −2Qg4

h 0

i −3g2yy

Table 9. Divergent contributions from figure 13.

and also

k1 = −3

2
k2 = 3k3, k4 = 0, ρ =

1

3
. (3.33)

require no non-linear renormalisation of Fi.

It is tempting to feel that there is something particularly significant about the choices

in eqs. (3.32), (3.33) since they provided solutions in ref. [30] at one and two loops without

the need for any further renormalisation of Fi; and in fact they also solve our current

model with the β-functions in eq. (3.21), with r = s = t = 0, i.e. derived using the minimal

renormalisation of the Fi consistent with renormalisability.

4 Conclusions

We have performed a complete one-loop analysis of the renormalisation of the simplest

gauged U1 non-anticommutative Wess-Zumino model with a superpotential. We started

with the action derived from the non-anticommutative superspace theory, but then found it

necessary (working with the uneliminated form of the action, without eliminating auxiliary

fields) also to include all possible terms which can be generated by renormalisation with

their own couplings. We showed that this leads to results compatible with those obtained

in the eliminated theory. Our main results are those in eq. (3.21) (in the uneliminated

case) and eq. (3.28) (in the eliminated case). This is the first complete one-loop calculation

for a general non-anticommutative supersymmetric gauge theory with a superpotential; as

mentioned earlier, in ref. [22] we omitted yy contributions to the renormalisation of terms

in Skin. The renormalisation of the theory is much simpler than in the SUN × U1 cases

considered in refs. [18, 19, 22], though once again we required a non-linear renormalisation

of the gaugino λ, as parametrised by ρi in eq. (3.11), accompanied by a renormalisation

parametrised by γi in eq. (2.2) (with ρi, γi as given in eq. (3.15)). These renormalisations

were determined by consideration of the theory with a superpotential; however, the renor-

malisations contains y-independent pieces which yet would not have been required in the

theory without a superpotential. It is somewhat reassuring that the y-independent part of

the renormalisations for the ρi and γi is exactly as would be obtained from the U1 part of
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the SUN × U1 theory of ref. [22], despite the fact that here we have considered a trilinear,

three-field superpotential and there we considered a mass term (with two fields).
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